372 research outputs found

    Adaptive Observation Strategy for Dispersion Process Estimation Using Cooperating Mobile Sensors ⋆

    Get PDF
    Abstract: Efficient online state estimation of dynamic dispersion processes plays an important role in a variety of safety-critical applications. The use of mobile sensor platforms is increasingly considered in this context, but implies the generation of situation-dependent vehicle trajectories providing high information gain in real-time. In this paper, a new adaptive observation strategy is presented combining state estimation based on partial differential equation models of the dispersion process with a model-predictive control approach for multiple cooperating mobile sensors. In a repeating sequential procedure, based on the Ensemble Transform Kalman Filter, the uncertainty of the current estimate is determined and used to find valuable measurement locations. Those serve as target points for the controller providing optimal trajectories subject to the vehicles ’ motion dynamics and cooperation constraints. First promising results regarding accuracy and efficiency were obtained

    Research in Nepal

    Get PDF
    Findings from University of Dayton geologist, Umesh Haritashya, after the deadly earthquake in Nepal April 25 will be published in a forthcoming article in Science, the leading journal on original scientific research

    A Universal Footstep Planning Methodology for Continuous Walking in Challenging Terrain Applicable to Different Types of Legged Robots

    Get PDF
    In recent years, the capabilities of legged locomotion controllers have been significantly advanced enabling them to traverse basic types of uneven terrain without visual perception. However, safely and autonomously traversing longer distances over difficult uneven terrain requires appropriate motion planning using online collected environmental knowledge. In this paper, we present such a novel methodology for generic closed-loop preceding horizon footstep planning that enables legged robots equipped with capable locomotion controllers to autonomously traverse previously unknown terrain while continuously walking long distances. Hereby, our approach addresses the challenge of online terrain perception and soft real-time footstep planning. The proposed new formulation of the search-based planning problem makes no specific assumptions about the robot kinematics (e.g. number of legs) or the used locomotion control schemes. Therefore, it can be applied to a broad range of different types of legged robots. Unlike current methods, the proposed new framework can optionally consider the floating base as part of the state-space. It is possible to configure the complexity of the planner online, from efficiently solving tasks in flat terrain to using non-contiguous contacts in highly challenging terrain. Finally, the presented methodology is successfully applied and evaluated in virtual and real experiments on state of the art bipedal, quadrupedal, and a novel eight-legged robot

    Структура и свойства керамического композиционного материала ZrO[2](MgO)-MgO с бимодальной пористостью

    Get PDF
    In this paper, different implementations of elastic joint models of industrial robots are described and compared established in ADAMS and SimMechanics. The models are intended to be used for path prediction under process force load due to Roboforming and High Speed Cutting, respectively. The computational results have been compared and showed good agreement. In experiments of robot forming and robot milling the measured and simulated path deviations according to the process force are compared. The experiments are descriped and the results are discussed within the paper as a basis of a next step model based compensation of the path deviation

    RoboCup Soccer Leagues

    Get PDF
    RoboCup was created in 1996 by a group of Japanese, American, and European Artificial Intelligence and Robotics researchers with a formidable, visionary long-term challenge: “By 2050 a team of robot soccer players will beat the human World Cup champion team.” At that time, in the mid 90s, when there were very few effective mobile robots and the Honda P2 humanoid robot was presented to a stunning public for the first time also in 1996, the RoboCup challenge, set as an adversarial game between teams of autonomous robots, was fascinating and exciting. RoboCup enthusiastically and concretely introduced three robot soccer leagues, namely “Simulation,” “Small-Size,” and “Middle-Size,” as we explain below, and organized its first competitions at IJCAI’97 in Nagoya with a surprising number of 100 participants [RC97]. It was the beginning of what became a continously growing research community. RoboCup established itself as a structured organization (the RoboCup Federation www.RoboCup.org). RoboCup fosters annual competition events, where the scientific challenges faced by the researchers are addressed in a setting that is attractive also to the general public. and the RoboCup events are the ones most popular and attended in the research fields of AI and Robotics.RoboCup further includes a technical symposium with contributions relevant to the RoboCup competitions and beyond to the general AI and robotics

    Design Concepts for a new Temporal Planning Paradigm

    Get PDF
    Abstract Throughout the history of space exploration, the complexity of missions has dramatically increased, from Sputnik in 1957 to MSL, a Mars rover mission launched in November 2011 with advanced autonomous capabilities. As a result, the mission plan that governs a spacecraft has also grown in complexity, pushing to the limit the capability of human operators to understand and manage it. However, the effective representation of large plans with multiple goals and constraints still represents a problem. In this paper, a novel approach to address this problem is presented. We propose a new planning paradigm named HTLN, intended to provide a compact and understandable representation of complex plans and goals based on Timeline planning and Hierarchical Temporal Networks. We also present the design of a planner based on HTLN, which enables new planning approaches that can improve the performance of present real-world domains

    Implications from Responsible Human-Robot Interaction with Anthropomorphic Service Robots for Design Science

    Get PDF
    Accelerated by the COVID-19 pandemic, anthropomorphic service robots are continuously penetrating various domains of our daily lives. With this development, the urge for an interdisciplinary approach to responsibly design human-robot interaction (HRI), with particular attention to human dignity, privacy, compliance, and transparency, increases. This paper contributes to design science, in developing a new artifact, i.e., an interdisciplinary framework for designing responsible HRI with anthropomorphic service robots, which covers the three design science research cycles. Furthermore, we propose a multi-method approach by applying this interdisciplinary framework. Thereby, our finding offer implications for designing HRI in a responsible manner

    Responsible Human-Robot Interaction with Anthropomorphic Service Robots: State of the Art of an Interdisciplinary Research Challenge

    Get PDF
    Anthropomorphic service robots are on the rise. The more capable they become and the more regular they are applied in real-world settings, the more critical becomes the responsible design of human-robot interaction (HRI) with special attention to human dignity, transparency, privacy, and robot compliance. In this paper we review the interdisciplinary state of the art relevant for the responsible design of HRI. Furthermore, directions for future research on the responsible design of HRI with anthropomorphic service robots are suggested
    corecore